
A nearly-m log n time solver for SDD linear systems

Ioannis Koutis
Computer Science Department

University of Puerto Rico-Rio Piedras

Email: ioannis.koutis@upr.edu

Gary L. Miller
Computer Science Department

Carnegie Mellon University

Email: glmiller@cs.cmu.edu

Richard Peng
Computer Science Department

Carnegie Mellon University

Email: yangp@cs.cmu.edu

Abstract—We present an improved algorithm for solving
symmetrically diagonally dominant linear systems. On input of
an n × n symmetric diagonally dominant matrix A with m
non-zero entries and a vector b such that Ax̄ = b for some
(unknown) vector x̄, our algorithm computes a vector x such
that ||x− x̄||A < ε||x̄||A 1 in time

Õ(m log n log(1/ε)).2

The solver utilizes in a standard way a ‘preconditioning’
chain of progressively sparser graphs. To claim the faster
running time we make a two-fold improvement in the algorithm
for constructing the chain. The new chain exploits previously
unknown properties of the graph sparsification algorithm given
in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger precon-
ditioning properties. We also present an algorithm of independent
interest that constructs nearly-tight low-stretch spanning trees in
time Õ(m log n), a factor of O(log n) faster than the algorithm
in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly
reflects on the construction time of the preconditioning chain.

Index Terms—algorithms; spectral graph theory; linear sys-
tems; combinatorial preconditioning

I. INTRODUCTION

Solvers for symmetric diagonally dominant (SDD)3 systems

are a crucial component of the fastest known algorithms

for a multitude of problems that include (i) Computing the

first non-trivial (Fiedler) eigenvector of the graph, with well

known applications to the sparsest-cut problem [1], [2], [3]; (ii)

Generating spectral sparsifiers that also act as cut-preserving

sparsifiers [4]; (iii) Solving linear systems derived from elliptic

finite element discretizations of a significant class of partial

differential equations [5]; (iv) Generalized lossy flow problems

[6]; (v) Generating random spanning trees [7]; (vi) Faster

maximum flow algorithms [8]; and (vii) Several optimization

problems in computer vision [9], [10] and graphics [11], [12].

These algorithmic advances were largely motivated by the

seminal work of Spielman and Teng who gave the first nearly-

linear time solver for SDD systems [13], [14], [15]. The

running time of their solver is a large number of polylog-

arithmic factors away from the obvious linear time lower

bound. In recent work, building upon further work of Spielman
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1|| · ||A denotes the A-norm
2The Õ notation hides a (log log n)2 factor
3A system Ax = b is SDD when A is symmetric and Aii ≥

∑
j �=i |Aij |.

and Srivastava [4], we presented a simpler and faster SDD

solver with a run time of Õ(m log2 n log ε−1), where m is the

number of nonzero entries, n is the number of variables, and

ε is a standard measure of the approximation error [16].

It has been conjectured that the algorithm of [16] is not

optimal [17], [18], [19]. In this paper we give an affirmative

answer by presenting a solver that runs in Õ(m log n log ε−1)
time.

The O(logn) speedup of the SDD solver applies to all

algorithms listed above, and we believe that it will prove to

be quite important in practice, as applications of SDD solvers

frequently involve massive graphs [18].

A. Overview of our techniques

The key to all known near-linear work SDD solvers is

spectral graph sparsification, which on a given input graph G
constructs a sparser graph H such that G and H are ‘spectrally

similar’ in the condition number sense, defined in Section

II. Spectral graph sparsification can be seen as a significant

strengthening of the notion of cut-preserving sparsification

[20].

The new solver follows the framework of recursive

preconditioned Chebyshev iterations [15], [16]. The iter-

ations are driven by a so-called preconditioning chain
{G1, H1, G2, H2, . . . , } of graphs, where Hi is a spectral

sparsifier for Gi and Gi+1 is generated by contracting Hi

via a greedy elimination of degree 1 and 2 nodes. The total

work of the solver includes the time for constructing the chain,

and the work spent on actual iterations which is a function on

the preconditioning quality of the chain. The preconditioning

quality of the chain in turn depends on the guarantees of the

sparsification algorithm.

More concretely, all sparsification routines that have been

used in SDD solvers conform to the same template; on input a

graph G with n vertices and m edges returns a graph H with

n + Õ(m logc n)/κ edges such that the condition number of

the Laplacians of G and H is κ. In all known SDD solvers

the factor Õ(logc n) appears directly in the running time of

the SDD solver. In particular the solver of [21] was based on

a sparsification routine for which c = 2.

The optimism that SDD systems can be solved in time

Õ(m log n log ε−1) has mainly been based on the result of

Kolla et al. [22] who proved that there is a polynomial (but

far from nearly-linear) time algorithm that returns a sparsifier

with c = 1. However, our new solver is instead based on a



slight modification and a deeper analysis of the sparsification

algorithm in [16] which enables a subtler chain construction.

The incremental sparsification algorithm in [16] computes

and keeps in H a properly scaled copy of a low-stretch

spanning tree of G, and adds to H a number of off-tree

samples from G. The key enabling observation in the new

analysis is that the total stretch of the off-tree edges is

essentially invariant under sparsification. In other words, the

total stretch of the off-tree edges in Hi is at most equal to that

Gi. The total stretch is invariable under the graph contraction

process as well. The elimination process that generates Gi+1

from Hi naturally generates a spanning tree for Gi+1. The total

stretch of the off-tree edges in Gi+1 is at most equal to that in

Hi. This effectively allows us to compute only one low-stretch

spanning tree for the first graph in the chain, and keep the same

tree for the rest of the chain. This is a significant departure

from previous constructions, where a low-stretch spanning tree

had to be calculated for each Gi.

The ability to keep the same low-stretch spanning tree for

the whole chain, allows us to prove that Laplacians of spine-
heavy graphs, i.e. graphs with a spanning tree with average

stretch O(1/ log n), can be solved in linear time. This average

stretch is a factor of Õ(log2 n) smaller than what is true for

general graphs. We reduce the first general graph G1 into

a spine-heavy graph G2 by scaling-up the edges of its low-

stretch spanning tree by a factor of Õ(log2 n). This results in

the construction of a preconditioner chain with a skewed set of

conditioner numbers. That is, the condition number of the pair

(Gi, Hi) is a fixed constant with the exception of (G1, H1)
for which it is Õ(log2 n). In all previous solvers the condition

number for the pair (Gi, Hi) was a uniform function of the

size of Gi.

An additional significant departure from previous construc-

tions is in the way that the number of edges decreases between

subsequent Gi’s in the chain. For example, in the [16] chain

the number of edges in Gi+1 is always at least a factor of

Õ(log2 n) smaller than the number of edges in Gi. In the

chain presented in this paper irregular decreases are possible;

for example a big drop in the number of edges may occur

between G2 and G3 and the progress may stagnate for a while

after G3, until it starts again.

In order to analyze this new chain we view the graphs Hi as

multi-graphs or graphs of samples. In the sampling procedure

that generates Hi, some off-tree edges of Gi can be sampled

multiple times, and so Hi is naturally a multi-graph, where

the weight of a ‘traditional’ edge e is split among a number

of parallel multi-edges with the same endpoints. The progress

of the overall sparsification in the chain is then monitored

in terms of the number of multi-edges in the Hi’s. In other

words, when the algorithm appears to be stagnated in terms

of the edge count in the Gi’s, progress is still happening by

‘thinning’ the off-tree edges. The details are given in Section

IV.

The final bottleneck to getting an O(m log n) algorithm for

very sparse systems is the Õ(m log n+n log2 n) running time

of the algorithm for constructing a low-stretch spanning tree

[23], [14]. We address the problem by noting that it suffices

to find a low-stretch spanning tree on a graph with edge

weights that are roughly powers of 2. In this special setting,

the shortest path like ball/cone growing routines in [23], [14]

can be sped up in a way similar to the technique used in [24].

We also slightly improve the result of [24], which may be of

independent interest.

II. BACKGROUND AND NOTATION

A matrix A is symmetric diagonally dominant if it is

symmetric and Aii ≥
∑

j �=i |Aij |. It is well understood that

any linear system whose matrix is SDD is easily reducible to

a system whose matrix is the Laplacian of a weighted graph

with positive weights [25]. The Laplacian matrix of a graph

G = (V,E,w) is the matrix defined as

LG(i, j) = −wi,j and LG(i, i) =
∑
j �=i

wi,j .

There is a one-to-one correspondence between graphs and

Laplacians which allows us to extend some algebraic opera-

tions to graphs. Concretely, if G and H are graphs, we will

denote by G+H the graph whose Laplacian is LG+LH , and

by cG the graph whose Laplacian is cLG.

Definition 2.1: [Spectral ordering of graphs]
We define a partial ordering � of graphs by letting

G � H if and only if xTLGx ≤ xTLHx,

for all real vectors x. •
If there is a constant c such that G � cH � κG, we say

that the condition of the pair (G,H) is κ. In our proofs we

will find useful to view a graph G = (V,E,w) as a graph

with multiple edges.

Definition 2.2: [Graph of samples]
A graph G = (V,E,w) is called a graph of samples, when

each edge e of weight we is considered as a sum of a set Le

of parallel edges, each of weight wl = we/|Le|. When needed

we will emphasize the fact that a graph is viewed as having

parallel edges, by using the notation G = (V,L, w). •
Definition 2.3: [Stretch of edge by tree]

Let T = (V,ET , w) be a tree. For e ∈ ET let w′e = 1/we.

Let e be an edge not necessarily in ET , of weight we. If the

unique path connecting the endpoints of e in T consists of

edges e1 . . . ek, the stretch of e by T is defined to be

stretchT (e) =

∑k
i=1 w

′
ei

w′e
. •

A key to our results is viewing graphs as resistive electrical

networks [26]. More concretely, if G = (V,L, w) each l ∈ L
corresponds to a resistor of capacity 1/wl connecting the two

endpoints of L. We denote by RG(e) the effective resistance
between the endpoints of e in G. The effective resistance on

trees is easy to calculate; we have RT (e) =
∑k

i=1 1/w(ei).
Thus

stretchT (e) = weRT (e).



We extend the definition to l ∈ Le in the natural way

stretchT (l) = wlRT (e),

and note that stretchT (e) =
∑

l∈Le
stretchT (l).

This definition can also be extended to set of edges. Thus

stretchT (E) denotes the vector of stretch values of all edges

in E. We also let stretchT (G) denote the vector of stretch

for edges in EG − ET .
Definition 2.4: [Total Off-Tree Stretch]

Let G = (V,EG, w) be a graph, T = (V,ET , w) be a spanning

tree of G. We define

|stretchT (G)| =
∑

e∈EG−ET

stretchT (e). •

III. INCREMENTAL SPARSIFIER

In their remarkable work [4], Spielman and Srivastava

analyzed a spectral sparsification algorithm based on a simple

sampling procedure. The sampling probabilities were propor-

tional to the effective resistances RG(e) of the edges on the

input graph G. Our solver in [16] was based on an incremental
sparsification algorithm which used upper bounds on the

effective resistances, that are more easily calculated. In this

section we give a more careful analysis of the incremental

sparsifier algorithm given in [16].
We start by reviewing the basic SAMPLE procedure. The

procedure takes as input a weighted graph G and frequencies

p′e for each edge e. These frequencies are normalized to

probabilities pe summing to 1. It then picks in q rounds

exactly q samples which are weighted copies of the edges.

The probability that given edge e is picked in a given round

is pe. The weight of the corresponding sample is set so that

the expected weight of the edge e after sampling is equal to

its actual weight in the input graph. The details are given in

the following pseudocode.

SAMPLE

Input: Graph G = (V,E,w), p′ : E → R
+, real ξ.

Output: Graph G′ = (V,L, w′).
1: t :=

∑
e p
′
e

2: q := Cst log t log(1/ξ) (* CS is an explicitly known constant *)

3: pe := p′e/t
4: G′ := (V,L, w′) with L = ∅
5: for q times do
6: Sample one e ∈ E with probability of picking e being pe
7: Add sample of e, l to Le with weight w′

l = we/(peq)

(* Recall that L =
⋃

e∈E Le *)

8: end for
9: return G′

The following Theorem characterizes the quality of G′ as a

spectral sparsifier for G and it was proved in [16].
Theorem 3.1: (Oversampling) Let G = (V,E,w) be a

graph. Assuming that p′e ≥ weRG(e) for each edge e ∈ E,

and ξ ∈ Ω(1/n), the graph G′ = SAMPLE(G, p′, ξ) satisfies

G � 2G′ � 3G

with probability at least 1− ξ.

Suppose we are given a spanning tree T of G = (V,E,w).
The incremental sparsification algorithm of [16] was based

on two key observations: (a) By Rayleigh’s monotonicity law

[26] we have RT (e) ≥ RG(e) because T is a subgraph of

G. Hence the numbers stretchT (e) satisfy the condition of

Theorem 3.1 and they can be used in SAMPLE. (b) Scaling up

the edges of T in G by a factor of κ gives a new graph G′

where the stretches of the off-tree are smaller by a factor of κ
relative to those in G. This forces SAMPLE (when applied on

G′) to sample more often edges from T , and return a graph

with a smaller number of off-tree edges. In other words, the

scale-up factor κ allows us to control the number of off-tree

edges. Of course this comes at the cost of incurring condition

κ between G and G′.
In this paper we follow the same approach, but also modify

INCREMENTALSPARSIFY so that the output graph is a union

of a copy of T and the off-tree samples picked by SAMPLE. To

emphasize this, we will denote the edge set of the output graph

by ET ∪ L. The details are given in the following algorithm.

INCREMENTALSPARSIFY

Input: Graph G = (V,E,w), edge-set ET of spanning tree T ,

reals κ > 1, 0 < ξ < 1
Output: Graph H = (V,ET ∪ L) or FAIL

1: Calculate stretchT (G)
2: if |stretchT (G)| ≤ 1 then
3: return 2T
4: end if
5: T ′ := κT .

6: G′ := G+ (κ− 1)T
(* G′ is the graph obtained from G by replacing T by T ′ *)

7: t̂ := |stretchT ′(G′)| (* t̂ = |stretchT (G)|/κ *)

8: t = t̂+ n− 1 (* total stretch including tree edges *)

9: H̃ = (V, L̃) := SAMPLE(G′, stretchT ′(E′), ξ)

10: if (
∑

e�∈ET
|L̃e|) ≥ 2(t̂/t)Cs log t log(1/ξ)

(* Cs is the constant in SAMPLE *)

11: return FAIL
12: end
13: L := L̃ −⋃

e∈ET
L̃e.

14: H := L+ 3T ′

15: return 4H

Theorem 3.2: Let G be a graph with n vertices and m
edges and T be a spanning tree of G. Then for ξ ∈ Ω(1/n),
INCREMENTALSPARSIFY(G,ET , κ, ξ) computes with proba-

bility at least 1− 2ξ a graph H = (V,ET ∪ L) such that

• G � H � 54κG
• |L| ≤ 2t̂CS log t log(1/ξ)

where t̂ = stretchT (G)/κ, t = t̂ + n − 1, and CS is the

constant in SAMPLE. The algorithm can be implemented to

run in Õ((n log n+ t̂ log2 n) log(1/ξ)).

Proof: We first suppose that |stretchT (G)| ≤ 1 holds.

Thus G/2 � T � G, by well known facts [27]. Therefore



returning H = 2T satisfies the claims. Now assume that the

condition is not true. Since in Step 6 the weight of each

tree edge is increased by at most a factor of κ, we have

G � G′ � κG. INCREMENTALSPARSIFY sets p′e = 1 if

e ∈ ET and stretchT (e)/κ otherwise, and invokes SAMPLE

to compute a graph H̃ such that with probability at least 1−ξ,

we get

G � G′ � 2H̃ � 3G′ � 3κG. (3.1)

We now bound the number |L| of off-tree samples drawn

by SAMPLE. For the number t used in SAMPLE we have t =
t̂ + n − 1 and q = Cst log t log(1/ξ) is the number samples

drawn by SAMPLE. Let Xi be a random variable which is

1 if the ith sample picked by SAMPLE is a non-tree edge

and 0 otherwise. The total number of non-tree samples is the

random variable X =
∑q

i=1 Xi, and its expected value can be

calculated using the fact Pr(Xi = 1) = t̂/t:

E[X] = q
t̂

t
= t̂

Cst log t log(1/ξ)

t
= CS t̂ log t log(1/ξ).

Step 12 assures that H does not contain more than 2E[X]
edges so the claim about the number of off-tree samples

is automatically satisfied. A standard form of Chernoff’s

inequality is:

Pr[X > (1 + δ)E[X]] < exp(−δ2E[X])

Pr[X < (1− δ)E[X]] < exp(−δ2E[X]).

Letting δ = 1, and since t̂ > 1, CS > 2 we get Pr[X >
2E[X]] < (exp(−2E[X]) < 1/n2. So, the probability that

the algorithm returns a FAIL is at most 1/n2. It follows that

the probability that an output of SAMPLE satisfies inequality

3.1 and doesn’t get rejected by INCREMENTALSPARSIFY is at

least 1− ξ − 1/n2.

We now concentrate on the edges of T . Any fixed edge

e ∈ ET is sampled with probability 1/t in SAMPLE. Let Xe

denote the random variable equal to number of times e is

sampled. Since there are q = Cst log t log(1/ξ) iterations of

sampling, we have E[Xe] = q/t ≥ Cs log n. By the Chernoff

inequalities above, setting δ = 1/2 we get that

Pr[Xe > (3/2)E[Xe]] ≤ exp(−(Cs/4) log n)

and

Pr[Xe < (1/2)E[Xe]] ≤ exp(−(Cs/4) log n).

By setting Cs to be large enough we get

exp(−(Cs/4) log n) < n−4. So with probability at least

1−1/n2 there is no edge e ∈ ET such that Xe > (3/2)E[Xe]
or Xe < (1/2)E[Xe]. Therefore we get that with probability

at least 1− 1/n2 all the edges e ∈ ET in H̃ have weights at

most three times larger than their weights in (H/2), and

G � H̃ � H � 18H̃ � 54κG.

Overall, the probability that the output H of INCREMEN-

TALSPARSIFY satisfies the claim about the condition number

is at least 1− ξ − 2/n2 ≥ 1− 2/ξ.

We now consider the time complexity. We first compute

the effective resistance of each non-tree edge by the tree.

This can be done using Tarjan’s off-line LCA algorithm [28],

which takes O(m) time [29]. We next call SAMPLE, which

draws a number of samples. Since the samples from ET

don’t affect the output of INCREMENTALSPARSIFY we can

implement SAMPLE to exploit this; we split the interval [0, 1]
to two non-overlapping intervals with length corresponding to

the probability of picking an edge from ET and E − ET .

We further split the second interval by assigning each edge

in E − ET with a sub-interval of length corresponding to its

probability, so that no two intervals overlap. At each sampling

iteration we pick a random value in [0, 1] and in O(1) time we

decide if the value falls in the interval associated with E−ET .

If no, we do nothing. If yes, we do a binary search taking

O(logn) time in order to find the sub-interval that contains

the value. With the given input SAMPLE draws at most

Õ(t̂ log n log(1/ξ)) samples from E − ET and for each such

sample it does O(logn) work. It also does O(n log n log(1/ξ))
work rejecting the samples from ET . Thus the cost of the call

to SAMPLE is Õ((n log n+ t̂ log2 n) log(1/ξ)).

Since the weights of the tree-edges ET in H are different

than those in G, we will use TH to denote the spanning tree

of H whose edge-set is ET . We now show a key property of

INCREMENTALSPARSIFY.

Lemma 3.3: (Uniform Sample Stretch) Let H = (V,ET ∪
L, w) := INCREMENTALSPARSIFY(G,ET , κ, ξ), and CS , t as

defined in Theorem 3.2. For all l ∈ L, we have

stretchTH
(l) =

1

3CS log t log(1/ξ)
.

Proof: Let T ′ = κT . Consider an arbitrary non-tree edge

e of G′ defined in Step 5 of INCREMENTALSPARSIFY. The

probability of it being sampled is:

p′e =
1

t
· we ·RT ′(e)

where RT ′(e) is the effective resistance of e in T ′ and t =
n−1+sT ′(G′) = n−1+stretchT (G)/κ is the total stretch of

all G′ edges by T ′. If e is picked, the corresponding sample l
has weight we scaled up by a factor of 1/p′e, but then divided

by q at the end. This gives

wl =
we

p′e
· 1
q
=

we

(weRT ′(e))/t
· 1

CSt log t log(1/ξ)

=
1

CSRT ′(e) log t log(1/ξ)
.

So the stretch of l with respect to T ′ is independent from we

and equal to

stretchT ′(e) = wlRT ′(e) =
1

CS log t log(1/ξ)
.

Finally note that TH = 3T ′. This proves the claim.



IV. SOLVING USING INCREMENTAL SPARSIFIERS

We follow the framework of the solvers in [15] and [16]

which consist of two phases. The preconditioning phase builds

a chain of graphs C = {G1, H1, G2, . . . , Hd} starting with

G1 = G, along with a corresponding list of positive numbers

K = {κ1, . . . , κd−1} where κi is an upper bound on the con-

dition number of the pair (Gi, Hi). The process for building

C alternates between calls to a sparsification routine (in our

case INCREMENTALSPARSIFY) which constructs Hi from Gi

and a routine GREEDYELIMINATION which constructs Gi+1

from Bi, by applying a greedy elimination of degree 1 and

2 nodes. The preconditioning phase is independent from the

b-side of the system LAx = b. The solve phase passes C, b
and a number of iterations t (depending on a desired error ε)
to the recursive preconditioning algorithm R-P-CHEBYSHEV,

described in [15] or in the appendix of [16].

We first give pseudocode for GREEDYELIMINATION, which

deviates slightly from the standard presentation where the

input and output are the two graphs G and Ĝ, to include a

spanning tree of the graphs.

GREEDYELIMINATION

Input: Graph G = (V,E,w), Spanning tree T of G

Output: Graph Ĝ = (V̂ , Ê, ŵ), Spanning tree T̂ of Ĝ

1: Ĝ := G
2: ET̂ := ET

3: repeat
4: greedily remove all degree-1 nodes from Ĝ
5: if degĜ(v) = 2 and (v, u1), (v, u2) ∈ EĜ then
6: w′ := (1/w(u1, v) + 1/w(u2, v))

−1

7: w′′ := w(u1, u2) (* it may be the case that w′′ = 0 *)

8: replace the path (u1, v, u2) by an edge e of weight

w′ in Ĝ
9: if (u1, v) or (v, u2) are not in T̂ then

10: Let T̂ = {T̂} − {(u1, v), (v, u2), (u1, u2)}
11: else
12: Let T̂ = {T̂ ∪ e} − {(u1, v), (v, u2), (u1, u2)}
13: end if
14: end if
15: until there are no nodes of degree 1 or 2 in Ĝ
16: return Ĝ

Of course we still need to prove that the output T̂ is indeed

a spanning tree. We prove the claim in the following Lemma

that also examines the effect of GREEDYELIMINATION to the

total stretch of the off-tree edges.

Lemma 4.1: Let (Ĝ, T̂ ) := GREEDYELIMINATION(G,T ).
The output T̂ is a spanning tree of Ĝ, and

|stretchT̂ (Ĝ)| ≤ |stretchT (G)|.

Proof: We prove the claim inductively by showing that it

holds for all the pairs (Ĝi, T̂i) throughout the loop, where

(Ĝi, T̂i) denotes the pair (Ĝ, T̂ ) after the ith elimination

during the course of the algorithm. The base of the induction

is the input pair (G,T ) and so the claim holds for it.

When a degree-1 node gets eliminated the corresponding

edge is necessarily in ET̂ by the inductive hypothesis. Its

elimination doesn’t affect the stretch of any off-tree edge.

So, it is clear that if (Ĝi, T̂i) satisfy the claim then after the

elimination of a degree-1 node (Ĝi+1, T̂i+1) will also satisfy

the claim.

By the inductive hypothesis about T̂i if (v, u1), (v, u2) are

eliminated then at least one of the two edges must be in T̂i.

We first consider the case where one of the two (say (v, u2)) is

not in T̂i. Both u1 and u2 must be connected to the rest of Ĝi

through edges of T̂i different than (u1, v) and (v, u2). Hence

T̂i+1 is a spanning tree of Ĝi+1. Observe that we eliminate at

most two non-tree edges from Ĝi: (v, u2) and (u1, u2) with

corresponding weights w(v, u2) and w′′ respectively. Let T̂ [e]
denote the unique tree-path between the endpoints of e in

T̂ . The contribution of the two eliminated edges to the total

stretch is equal to

s1 = w(v, u2)RT̂i
((v, u2)) + w′′RT̂i

((u1, u2)).

The two eliminated edges get replaced by the edge (u1, u2)
with weight w′+w′′. The contribution of the new edge to the

total stretch in Ĝi+1 is equal to

s2 = w′RT̂i+1
((u1, u2)) + w′′RT̂i+1

((u1, u2)).

We have RT̂i+1
((u1, u2)) = RT̂i

((u1, u2)) < RT̂i
((v, u2))

since all the edges in the tree-path of (u1, u2) are not affected

by the elimination. We also have w(v, u2) > w′, hence s1 >
s2. The claim follows from the fact that no other edges are

affected by the elimination, so

|stretchT̂i
(Ĝi)| − |stretchT̂i+1

(Ĝi+1)| = s1 − s2 > 0.

We now consider the case where both edges eliminated in

Steps 5-13 are in T̂i. It is clear that T̂i+1 is a spanning tree

of Ĝi+1. Consider any off-tree edge e not in T̂i+1. One of

its two endpoints must be different than either u1 or u2, so

its endpoints and weight we are the same in T̂i. However

the elimination of v may affect the stretch of e if T̂i[e] goes

through v. Let

τ = (
∑

e′∈T̂i[e]

1/we′)− (1/w(u1, v) + 1/w(u2, v))

= (
∑

e′∈T̂i+1[e]

1/we′)−

(
(1/w(u1, v) + 1/w(u2, v))

−1
+ we

)−1

.

We have

stretchT̂i
(e)

stretchT̂i+1
(e)

=
we

∑
e′∈T̂i[e]

1/we′

we

∑
e′∈T̂i+1[e]

1/we′
=

(1/w(u1, v) + 1/w(u2, v)) + τ(
(1/w(u1, v) + 1/w(u2, v))

−1
+ we

)−1

+ τ
≥ 1.



Since individual edge stretches only decrease, the total stretch

also decreases and the claim follows.
Before we proceed to the algorithm for building the chain

we will need a modified version of a result by Abraham,

Bartal, and Neiman [23], which we prove in Section V.
Theorem 4.2: There is an algorithm LOWSTRETCHTREE

that, given a graph G = (V,E,w), outputs a spanning tree

T of G such that∑
e∈E

stretchT (e) ≤ O(m log n log log3 n).

The algorithm runs in O(m log n+ n log n log log n) time.
Algorithm BUILDCHAIN generates the chain of graphs.

BUILDCHAIN

Input: Graph G, scalar p with 0 < p < 1
Output: Chain of graphs C = {G = G1, H1, G2, . . . , Gd}, List

of numbers K.

1: (* cstop and κc are explicitly known constants *)

2: G1 := G
3: T := LOWSTRETCHTREE(G)
4: H1 := G1 + Õ(log2 n)T
5: G2 := H1

6: K := ∅; C := ∅; i := 2
7: ξ := 2 logn
8: ET2 := ET

9: (*ni denotes the number of nodes in Gi*)

10: while ni > cstop do
11: Hi = (Vi, ETi ∪ Li)

:= INCREMENTALSPARSIFY(Gi, ETi , κc, pξ)
12: {Gi+1, Ti+1} := GREEDYELIMINATION(Hi, Ti)
13: C = C ∪ {Gi, Hi}
14: i := i+ 1
15: end while
16: K = {Õ(log2 n), κc, κc, . . . , κc}
17: return {C,K}

A preconditioning chain of graphs must certain properties

in order to be useful with R-P-CHEBYSHEV.
Definition 4.3: [Good Preconditioning Chain]

Let C = {G = G1, H1, G2, . . . , Gd} be a chain of graphs and

K = {κ1, κ2, . . . , κd−1} a list of numbers. We say that {C,K}
is a good preconditioning chain for G, if there exist a list of

numbers U = {μ1, μ2, . . . μd} such that:

1) Gi � Hi � κiGi.

2) Gi+1 = GREEDYELIMINATION(Hi).
3) μi is at least the number of edges in Gi.

4) μ1, μ2 ≤ m, where m is the number of edges in G =
G1.

5) μi/μi+1 ≥ 	cr√κi� for all i > 1 where cr is an

explicitly known constant.

6) κi ≥ κi+1.

7) μd is a smaller than a fixed constant.

Spielman and Teng [15] analyzed the recursive precon-

ditioned Chebyshev iteration R-P-CHEBYSHEV that can be

found in the appendix of [16] and showed that the solution of

an arbitrary SDD system can be reduced to the computation of

a good preconditioning chain. This is captured more concretely

by the following Lemma which is adapted from Theorem 5.5

in [15].

Lemma 4.4: Let A be an SDD matrix with A = LG +
D where D is a diagonal matrix with non-negative ele-

ments, and LG is the Laplacian of a graph G. Given a

good preconditioning chain {C,K} for G, a vector x such

that ||x − A+b||A < ε||A+b||A can be computed in time

O(m
√
κ1 +m

√
κ1κ2) log(1/ε)).

It remains to show that our algorithm indeed generates a

good preconditioning chain.

Lemma 4.5: Given a graph G, BUILDCHAIN(G, p) pro-

duces with probability at least 1 − p, a good preconditioning

chain {C,K} for G, such that κ1 = Õ(log2 n) and for all i ≥
2, κi = κc for some constant κc. The algorithm runs in time

proportional to the running time of LOWSTRETCHTREE(G).

Proof: Let l1 denote the number of edges in G and li =
|Li| the number of off-tree samples for i > 1. We prove by

induction on i that:

(a) li+1 ≤ 2li/κc.

(b) stretchTi+1(Gi+1) ≤ li/(CS log ti log(1/(pξ))) = κct̂i,
where CS , t̂i and ti are as defined in Theorem 3.2 for the

graph Gi.

For the base case of i = 1, by picking a sufficiently large

scaling factor κ1 = Õ(log2 n) in Step 4, we can satisfy

claim (b). By Theorem 3.2 it follows that l2 ≤ 2l1/κc, hence

(a) holds. For the inductive argument, Lemma 3.3 shows

that stretchETi
(Hi) is at most li/(CS log ti log(1/(pξ))).

Then claim (b) follows from Lemma 4.1 and claim (a) from

Theorem 3.2.

We now exhibit the list of numbers U = {μ1, μ2 . . . μd}
required by Definition 4.3. A key property of

GREEDYELIMINATION is that if G is a graph with n− 1 + j
edges, the output Ĝ of GREEDYELIMINATION(G) has at

most 2j − 2 vertices and 3j − 3 edges [15]. Hence the graph

Gi+1 returned by GREEDYELIMINATION(Hi) has at most

6li/κc edges. Therefore setting μi = 6li/κc gives an upper

bound on the number of edges in Gi+1 and:

μi

μi+1
=

6li/κc

6li+1/κc
≥ 3li+1

6li+1/κc
≥ κc

2
.

At the same time we have Gi � Hi � 54κcGi. By picking

κc to be large enough we can satisfy all the requirements for

the preconditioning chain.

The probability that Hi has the above properties is by

construction at least 1 − p/(2 log n). Since there are at most

2 log n levels in the chain, the probability that the requirements

hold for all i is then at least

(1− p/(2 logn))2 log n > 1− p.

Finally note that each call to INCREMENTALSPARSIFY

takes Õ(μi log n log(1/p)) time. Since μi decreases geomet-

rically with i, the claim about the running time follows.



Combining Lemmas 4.4 and 4.5 proves our main Theorem.

Theorem 4.6: On input an n × n symmetric diagonally

dominant matrix A with m non-zero entries and a vector b, a

vector x satisfying ||x−A+b||A < ε||A+b||A can be computed

in expected time Õ(m log n log(1/ε)).

V. SPEEDING UP LOW STRETCH SPANNING TREE

CONSTRUCTION

We improve the running time of the algorithm for finding

a low stretch spanning tree given in [14], [23] by a factor

of log n, while retaining the O(m log n log log3 n) bound on

total stretch given in [23]. Specifically, we claim the following

Theorem.

Theorem 5.1: There is an algorithm LOWSTRETCHTREE

that given a graph G = (V,E,w), outputs a spanning tree

T of G in O(m log n+ n log n log log n) time such that∑
e∈E

stretchT (e) ≤ O(m log n log log3 n).

We first show that if the graph only has k distinct edge

weights, Dijkstra’s algorithm can be modified to run in

O(m+n log k) time. Our approach is identical to the algorithm

described in [24]. However, we obtain a slight improvement

in running time over the O(m log nk
m ) bound given in [24].

The low stretch spanning tree algorithm in [14], [23] makes

use of Dijkstra’s, as well as intermediate stages of it in

the routines BALLCUT and CONECUT. We first improve the

underlying data structure used by these routines.

Lemma 5.2: There is a data structure that given a list of

non-negative values L = {l1 . . . lk} (the distinct edge lengths),

maintains a set of keys (distances) starting with {0} under the

following operations:

1) FINDMIN(): returns the element with minimum key.

2) DELETEMIN(): delete the element with minimum key.

3) INSERT(j): insert the minimum key plus lj into the set

of keys.

4) DECREASEKEY(v, j): decrease the key of v to the

minimum key plus lj .

INSERT and DecreaseKey have O(1) amortized cost and

DELETEMIN has O(log k) amortized cost.

Proof: We maintain k queues Q1 . . . Qk containing the keys

with the invariant that the keys stored in them are in non-

decreasing order. We also maintain a Fibonacci heap as

described in [30] containing the first element of all non-empty

queues. Since the number of elements in this heap is at most

k, we can perform INSERT and DECREASEKEY in O(1) and

DELETEMIN in O(log k) amortized time on these elements.

The invariant then allows us to support FINDMIN in O(1)
time.

Since lk ≥ 0, the new key introduced by INSERT or

DECREASEKEY is always at least the minimum key. Therefore

the minimum key is non-decreasing throughout the operations.

So if we only append keys generated by adding lj to the

minimum key to the end of Qj , the invariant that the queues

are monotonically non-decreasing is maintained. Specifically,

INSERT(j) can be performed by appending a new entry to the

tail of Qj .

For DECREASEKEY(v, j), suppose v is currently stored in

queue Qi. We consider two cases:

1) v has a predecessor in Qi. Then the key of v is not the

key of Qi in the Fibonacci heap and we can remove v
from Qi in O(1) time while keeping the invariant. Then

we can insert v with its new key at the end of Qj using

one INSERT operation.

2) v is currently at the head of Qi. Then simply decreasing

the key of v would not violate the invariant of all keys

in the queues being monotonic. As the new key will be

present in the heap containing the first elements of the

queues, a decrease key needs to be performed on the

Fibonacci heap containing those elements.

DELETEMIN can be done by doing a delete min in the

Fibonacci heap, and removing the element from the queue

containing it. If the queue is still not empty, it can be reinserted

into the Fibonacci heap with key equaling to that of its new

first element. The amortized cost of this is O(log k)+O(1) =
O(log k).

The running times of Dijkstra’s algorithm, BALLCUT and

CONECUT then follows.

Corollary 5.3: Let G be a connected weighted graph and

x0 be some vertex. If there are k distinct values of d(u, v),
Dijkstra’s algorithm can compute d(x0, u) for all vertices u in

O(m+ n log k) time.

Proof: Same as the proof of Dijkstra’s algorithm with Fi-

bonacci heap, except the cost of a DELETEMIN is O(log k).

Corollary 5.4: (Corollary 4.3 of [14]) If there are at most

k distinct distances in the graph, then BALLCUT returns ball

X0 such that

cost(δ(X0)) ≤ O

(
m

rmax − rmin

)
,

in O(vol(X0) + |V (X0)| log k) time.

Corollary 5.5: (Lemma 4.2 of [14]) If there are at most k
distinct values in the cone distance ρ, then

For any two values 0 ≤ rmin < r′max, CONECUT finds a

real r ∈ [rmin, rmax) such that

cost(δ(Bρ(r, x0))) ≤ vol(Lr) + τ

rmax − rmin
·

max

[
1, log2

(
m+ τ

vol(E(Bρ(r, rmin)) + τ

)]
,

in O(vol(Bρ(r, x0)) + |V (Bρ(r, x0))| log k) time, where

Bρ(r, x0) is the set of all vertices v within distance r from x0

in cone length ρ.

Proof: The existence such a Lr follows from Lemma 4.2 of

[14] and the running time follows from the bounds given in

Lemma 5.2.

We now proceed to show a faster algorithm for constructing

low stretch spanning trees by using the data structure from



Lemma 5.2. Our presentation is based on the algorithm de-

scribed in [23], which consists of HIERARCHICALSTARPAR-

TITION at the top level that makes repeated calls to STARPAR-

TITION. STARPARTITION then in turn obtains a desired par-

tition via. calls to BALLCUT and IMPCONEDECOMP which

uses CONECUT. Due to space limitations we refer to these

routines without stating their parameters and guarantees.

Lemma 5.6: Given a graph X that has k distinct edge

lengths, The version of STARPARTITION that uses IMP-

CONEDECOMP as stated in Corollary 6 of [23] runs in time

O(vol(|X|) + |V (X)| log k).
Proof: Finding radius and calling BALLCUT takes

O(vol(|X|) + |V (X)| log k) time. Since the Xis form

a partition of the vertices and IMPCONEDECOMP never

reduce the size of a cone, the total cost of all calls to

IMPCONEDECOMP is∑
i

(vol(Xi) + |V (Xi)| log k) ≤ vol(X) + |V (X)| log k.

We now need to ensure that all calls to STARPARTITION

are made with a small value of k. This can be done by

rounding the edge lengths so that at any iteration of HIER-

ARCHICALSTARPARTITION, the graph has O(logn) distinct

edge weights.

Algorithm 1 Rounding of Edge Lengths

ROUNDLENGTHS

Input: Graph G = (V,E, d)

Output: Rounded graph G̃ = (V,E, d̃)

1: Sort the edge weights of d so that

d(e1) ≤ d(e2) ≤ · · · ≤ d(em).
2: i′ = 1
3: for i = 1 . . .m do
4: if d(ei) > 2d(ei′) then
5: i′ = i
6: end if
7: d̃(ei) = d(ei′)
8: end for
9: return G̃ = (V,E, d̃)

The cost of ROUNDLENGTHS is dominated by the sorting

the edges lengths, which takes O(m logm) time. Before we

examine the cost of constructing low stretch spanning tree on

G̃, we show that for any tree produced in the rounded graph

G̃, taking the same set of edges in G gives a tree with similar

average stretch.

Claim 5.7: For each edge e, 1
2d(e) ≤ d̃(e) ≤ d(e).

Lemma 5.8: Let T be any spanning tree of (V,E), and u, v
any pair of vertices, we have

1

2
dT (u, v) ≤ d̃T (u, v) ≤ dT (u, v).

Proof: Summing the bound on a single edge over all edges

on the tree path suffices.

Combining these two gives the following Corollary.

Corollary 5.9: For any pair of vertices u, v such that uv ∈
E,

1

2

d̃T (u, v)

d̃(u, v)
≤ dT (u, v)

d(u, v)
≤ 2

d̃T (u, v)

d̃(u, v)
.

Hence calling HIERARCHICALSTARPARTITION(G̃, x0, Q)
and taking the same tree in G gives a low stretch spanning

tree for G with O(m log n log log3 n) total stretch. It remains

to bound the running time.

Theorem 5.10: HIERARCHICALSTARPARTITION(G̃, x0, Q)
runs in O(m logm+ n logm log logm) time on the rounded

graph G̃.

Proof: It was shown in [14] that the lengths of all edges

considered at some point where the farthest point from x0 is

r is between r · n−3 and r. The rounding algorithm ensures

that if d̃(ei) �= d̃(ej) for some i < j, we have 2d̃(ei) <
d̃(ej). Therefore in the range [r, r · n3] (for some value of

r), there can only be O(logn) different edge lengths in d̃.

Lemma 5.6 then gives that each call of STAR-PARTITION runs

in O(vol(X) + |V (X)| log log n) time. Combining with the

fact that each edge appears in at most O(log n) layers of the

recursion (Theorem 5.2 of [14]), we get a total running time

of O(m log n+ n log n log log n).

VI. DISCUSSION

The output of INCREMENTALSPARSIFY is a graph of

samples with a remarkable property as a direct consequence

of Lemma 3.3; its further incremental sparsification can be

performed by a mere uniform sampling of its off-tree multi-

edges.

This leads naturally to the definition of a smooth sequence
of (multi)-graphs on a common set of vertices, with the

following properties: (i) it is of logarithmic size, (ii) the first

graph is spine-heavy, (iii) every two subsequent graphs have

a constant condition number, and (iv) the last graph is a

tree. The sequence can be obtained by applying one round of

INCREMENTALSPARSIFY to the spine-heavy graph, and then

O(logn) rounds of uniform sampling.

Smooth sequences of graphs can be useful in an alternative

way for building a chain of preconditioners, which separates

sparsification from greedy elimination. More concretely, the

alternative algorithm first builds a smooth sequence of graphs,

starting from the spine-heavy version of the input graph. Then,

somewhat roughly speaking, the final chain is obtained by

applying a slightly less aggressive version of GREEDYELIMI-

NATION to each graph in the sequence; this version eliminates

degree-one nodes as usually, but restricts itself to degree-two

nodes whose both adjacent edges are in the low-stretch tree.

The simplicity of this approach is particularly highlighted in

the case of low-diameter unweighted graphs. Solving such

graphs has now been essentially reduced to the computation

of a BFS tree followed by a number of rounds of uniform

sampling.

We believe that smooth sequences of graphs is a notion of

independent interest that may found other applications.
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Õ(n2) time Time,” in STOC, 1996, pp. 47–55.

[21] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality for solving
SDD systems,” in FOCS ’10: Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science. IEEE Computer
Society, 2010.

[22] A. Kolla, Y. Makarychev, A. Saberi, and S.-H. Teng, “Subgraph sparsi-
fication and nearly optimal ultrasparsifiers,” CoRR, vol. abs/0912.1623,
2009.

[23] I. Abraham, Y. Bartal, and O. Neiman, “Nearly tight low stretch spanning
trees,” in 49th Annual IEEE Symposium on Foundations of Computer
Science, 2008, pp. 781–790.

[24] J. B. Orlin, K. Madduri, K. Subramani, and M. Williamson, “A faster
algorithm for the single source shortest path problem with few distinct
positive lengths,” J. of Discrete Algorithms, vol. 8, pp. 189–198, June
2010. [Online]. Available: http://dx.doi.org/10.1016/j.jda.2009.03.001

[25] K. Gremban, “Combinatorial preconditioners for sparse, symmetric, di-
agonally dominant linear systems,” Ph.D. dissertation, Carnegie Mellon
University, Pittsburgh, October 1996, CMU CS Tech Report CMU-CS-
96-123.

[26] P. G. Doyle and J. L. Snell, “Random walks and electric networks,”
2000.

[27] E. G. Boman and B. Hendrickson, “Support theory for preconditioning,”
SIAM J. Matrix Anal. Appl., vol. 25, no. 3, pp. 694–717, 2003.

[28] R. E. Tarjan, “Applications of path compression on balanced trees,” J.
ACM, vol. 26, no. 4, pp. 690–715, 1979.

[29] H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a special
case of disjoint set union,” in STOC ’83: Proceedings of the 15th annual
ACM symposium on Theory of computing. New York, NY, USA: ACM,
1983, pp. 246–251.

[30] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and
their uses in improved network optimization algorithms,” J.
ACM, vol. 34, pp. 596–615, July 1987. [Online]. Available:
http://doi.acm.org/10.1145/28869.28874


